
Improving the Speed of Kernel PCA on Large Scale Datasets

Tat-Jun Chin and David Suter
Institute for Vision Systems Engineering,
Monash University, Victoria, Australia.
{ tat.chin | d.suter }@eng.monash.edu.au

Abstract

This paper concerns making large scale Kernel Princi-
pal Component Analysis (KPCA) feasible on regular hard-
ware. The KPCA has been proven a useful non-linear fea-
ture extractor in several computer vision applications. The
standard computation method for KPCA, however, scales
badly with the problem size, thus limiting the potential of the
technique for large scale data. We propose a novel method
to alleviate this problem. The essence of our solution lies
in partitioning the data and greedily filtering each partition
for a sparse representation. Incremental KPCA is then uti-
lized to merge each partition to arrive at the overall KPCA.
We also provide experimental results which demonstrate the
effectiveness of the approach.

1. Introduction

KPCA has been used as an effective non-linear feature
extraction method in the field of computer vision. Some
of the applications that benefitted from the non-linearity in-
duced by the kernelization of standard PCA include face
recognition, image denoising, acquisition of multiple view
descriptors and human motion modeling. There is also the
possibility of a variety of other applications within surveil-
lance that can be tackled by non-linear feature extraction.
Therefore, it is worthwhile investigating KPCA for process-
ing large scale datasets, since video surveillance systems
usually produce massive amounts of data.

However, the standard KPCA computation method via
eigendecompositions involves a time complexity of O(n3),
with n being the number of training vectors, thus imple-
menting KPCA on large datasets is prohibitively expen-
sive. In this paper, we propose a novel solution to alleviate
this problem. We take the “divide-and-conquer” approach
which differs from several methods proposed previously to
tackle the problem. The basis of our solution lies in parti-
tioning the large dataset that is to be processed into many

smaller and more manageable chunks. Through a process
called Greedy KPCA [5], we “filter” the individual data
chunks for representative vectors. The filtered data chunks
are then merged through an incremental KPCA process to
arrive at the overall KPCA. We show through experiments
that our solution is faster than previous approaches and is
capable of maintaining close approximation to the ground
truth given by the standard KPCA computation method.

We also demonstrate two practical computer vision ap-
plications using the proposed method, namely image de-
noising and super-resolution of face images. The second
application is potentially useful in visual surveillance, since
contemporary CCTV systems capture in low-resolution and
faces recorded might not be informative enough for recog-
nition. This can be rectified through super-resolution. As
mentioned previously, the applications of KPCA to video
surveillance problems is not limited to just this.

2. Related Work

Several methods have been proposed previously to
solve the computational complexity problem of KPCA. A
class of these methods is the sampling based approaches [9,
10, 1, 5]. For example, Williams et al. [10] proposed the
Nyström method. This involves a prior random sampling
of the training data to create a reduced-rank kernel matrix
which is then used to recover the eigenspectrum of the orig-
inal kernel matrix by using the Nyström theory. It is pointed
out in [10] that the major difference between their work and
the sparse greedy matrix approximation method [9] is how
the sampling is performed. The form of the eventual ker-
nel matrix approximation is actually identical. The Greedy
KPCA (GKPCA) which was proposed in [5] involves greed-
ily filtering the training data for a small but representative
subset of which the linear span closely resembles the linear
span of the original data. Standard PCA is then performed
on the subspace (of the kernel induced feature space) de-
fined by the small subset. One stage of our proposed method
includes using GKPCA, so the next section is devoted to de-

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

scribing it in more detail.

A non-sampling based method is the Kronecker factor-
ization approach [11] proposed by Wu et al. The Kronecker
factorization approximates a positive definite matrix by the
Kronecker product of two smaller positive definite matrices.
Eigendecompositions of the smaller matrices are computa-
tionally cheaper, and the eigenspectrum of the original ma-
trix can be reconstructed from the smaller eigenspectrums.
However, there is a prior cost of performing the Kronecker
factorization, and two methods were proposed in [11] to im-
plement it. It is shown in [11] that their method is compu-
tationally faster than the Nyström method.

We summarize the contributions of this paper here:
We argue that partitioning the training data for multiple
GKPCA filtering is faster than performing GKPCA on the
whole dataset. We also propose a method to compute
the overall KPCA by incrementally merging the individual
GKPCA results. We demonstrate that our method presents
a substantial improvement in processing speed, while main-
taining close approximation to standard KPCA results. In
addition, the KPCA expansion from our method is automat-
ically sparser due to the prior GKPCA filtering. This dif-
fers from some of the methods outlined here which attempt
to approximate the full eigenspectrum, hence requiring the
KPCA result to be expanded from all training data.

3. Greedy Kernel PCA

We have training data a = [x1 · · ·xn] ∈ R
m×n re-

siding in input space R
m which is implicitly mapped to a

feature space F to become A = φ(a), where the non-linear
map φ(·) is induced by a kernel function k(·, ·) [4]. GKPCA
aims to greedily “filter” a to produce a subset ȧ such that

span(Ȧ) ≈ span(A) , (1)

where Ȧ = φ(ȧ). Let J = {j1, · · · , js} be the set of indices
of vectors in ȧ. Then J ⊂ {1, · · · , n} with s < n and
ȧ = {xj : j ∈ J}. The intuition behind GKPCA is that if
span(Ȧ) is highly similar to span(A) and at the same time
s � n, processing Ȧ for KPCA is significantly faster than
processing A with the results being effectively similar.

To see this, we first orthogonalize Ȧ to obtain an or-
thonormal basis Ȧβ. An easy way to perform this is via
Kernel SVD [4]. The data A is projected onto Ȧβ to obtain

z = βT ȦT A , (2)

where z ∈ R
s×n. The kernel function k(·, ·) is utilized to

compute ȦT A. If we define Ã to be the approximation of
A using the reduced subset Ȧ, then

A ≈ Ã = Ȧβz . (3)

PCA is then performed on the columns of z. However, in-
stead of factorizing the Gram matrix G = zT z of size n×n,
we factorize the scaled covariance matrix C = zzT of size
s×s which is computationally cheaper. Note that z has to be
centered beforehand by subtracting the mean µ =

∑n
i=1 zi,

where zi is the i-th column of z. Let the SVD of C be
C = UΣV T . The approximate kernel principal compo-
nents of A are then

Ȧα, where α := βU. (4)

Similarly, the approximate mean of A is Ȧν, where ν :=
βµ. Note that compared to standard KPCA which involves
factorizing the overall kernel matrix, the kernel principal
components are expanded from a sparser dataset ȧ. This is
the objective for which the GKPCA was proposed [5].

A measure of how well Ȧβz approximates A given a
reduced set ȧ is the mean square error defined by

εMS(A|J) =
1
n

n∑
i=1

∥∥∥φ(xi)− Ȧβzi

∥∥∥2

, (5)

Note that J is sufficient to specify ȧ and Ȧβ. For a fixed
cardinality s of J , finding the optimal subset ȧ∗ of a can
then be casted as the optimization problem of finding the
corresponding J∗:

J∗ = arg min
J⊂{1,··· ,n}

εMS(A|J) . (6)

Several practical algorithms were introduced to implement
the optimization, with one having the lowest time complex-
ity of O(ns2). The reader is referred to [5] for details.

4. Large Scale Kernel PCA

We are dealing with large datasets typified by a =
[x1 · · ·xn] ∈ R

m×n, with n > 5000. Performing KPCA
by directly factorizing the kernel matrix of a using stan-
dard hardware would be prohibitive, since the computa-
tional complexity involved is O(n3). Greedily filtering a
for a lesser subset may allow us to deal with a smaller fac-
torization problem, but searching for an optimal subset ȧ
can be time-consuming, especially when n and s are very
large, since the complexity of GKPCA is O(ns2). Further-
more, there is no guarantee that, to a satisfactory approxi-
mation accuracy, a small enough subset ȧ always exists such
that computational effort for matrix factorization is greatly
reduced. We propose a method to alleviate this problem.

We first establish the meaning of commonly used sym-
bols. Given a matrix M , the symbol Ma:b,c:d defines the
submatrix that contains the elements of M within the inter-
section of the a-th row till the b-row and the c-th column till
the d-th column. If the row or column specifiers are omitted,
e.g. M:,c:d, take all available rows or columns.

2

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

4.1. Partitioning the Training Data

The proposed solution begins by partitioning a into
c smaller blocks ak, k = {1, · · · , c}, with the definition
a = [a1 · · · ac]. Let dk denote the size of each block, hence
n =

∑c
k=1 dk. GKPCA is then evaluated on each block,

yielding a total of c subsets ȧk for c blocks ak. The number
of vectors sk in each subset can be set to a constant value, or
be allowed to vary in order to achieve a pre-determined ap-
proximation accuracy. Hence, each data block Ak = φ(ak)
in F can be approximated by the corresponding reduced
subset as Ãk = Ȧkβkzk, with Ȧk = φ(ȧk). Matrix βk ac-
counts for orthogonalization of Ȧk and zk contains the pro-
jection components of Ak onto Ȧβk. Let µk be the mean of
zk, then νk = βkµk spans the mean of Ãk using Ȧk.

The next step involves computing the KPCA of a by
incrementally performing PCA using each approximation
data block Ãk as incremental data. We define the desired
overall KPCA model to be the structure

Ω∗ = {A∗, d∗, ν∗, α∗,Σ∗, V ∗} . (7)

A∗ ∈ F is the library of s∗ expansion vectors, while d∗

indicates the effective number of data on which the KPCA
was performed. Coefficients ν∗ and α∗ respectively span
the data mean A∗ν∗ and kernel principal components A∗α∗.
Matrices Σ∗ and V ∗ are respectively the singular values and
right singular vectors obtained from the factorization pro-
cess for KPCA using SVD.

The structure Ω∗ is initialized by performing PCA
on the first block Ã1 using z1. Let z1 be factorized as
z1 = U1Σ1(V1)T (z1 is centered with µ1 prior to this).
Then α1 = β1U1 spans the approximate kernel principal
components of a1 (refer to §3 for details). The parameters
of Ω∗ are initialized using the PCA results of Ã1: A∗ ← Ȧ1,
d∗ ← d1, ν∗ ← ν1, α∗ ← α1, Σ∗ ← Σ1, and V ∗ ← V1.

4.2. Incremental Kernel PCA

We wish to update Ω∗ using Ã2. Computing the new
number of data d∗

(new) can be easily done as d∗(new) = d∗ +
d2. Computing ν∗

(new) for the new mean is also trivial, with

ν∗
(new) =

1
d∗ + d2

[
d∗ν∗

d2ν2

]
, (8)

after which we can define A∗
(new) as the concatenation of

A∗ and Ȧ2, i.e. A∗
(new) = [A∗ Ȧ2]. For reasons that will

be explained later, we define the intermediate matrix

Ẽ :=
[

Ȧ2β2(z2 − µ2)
√

d∗·d2
d∗+d2

(A∗ν∗ − Ȧ2ν2)
]

.

(9)

The left submatrix on the right-hand-side is merely the
mean-adjusted version of Ã2. Matrix Ẽ can be written in
the form A∗

(new)γ, with

γ :=
[[

0s∗,d2

β1(z2 − µ2)

] √
d∗·d2
d∗+d2

[
ν∗

−ν2

]]
. (10)

The symbol 0r,c indicates an r × c matrix of zeroes. Our
goal is to find the PCA of [Ã∗ Ã2], where Ã∗ is the recon-
struction of feature space vectors using the model Ω∗:

Ã∗ = A∗(α∗Σ∗(V ∗)T + ν∗) . (11)

To this end, it was proven in [8] that the scatter matrix cor-
responding to [Ã∗ Ã2] is equal to

[A∗α∗Σ∗(V ∗)T Ẽ][A∗α∗Σ∗(V ∗)T Ẽ]T . (12)

This implies that to perform PCA on [Ã∗ Ã2], it is suffi-
cient to perform an SVD on [A∗α∗Σ∗(V ∗)T Ẽ]. Hence,
we can apply incremental Kernel SVD procedures [3] using
Ẽ as increment data to update Ω∗.

The derivations in [3] demonstrate how Kernel SVD
can be computed incrementally without explicitly evaluat-
ing the mapping φ (i.e. the kernel trick). It begins by iden-
tifying the factorization of [A∗α∗Σ∗(V ∗)T Ẽ] as:

[
A∗α∗ J

] [
Σ∗ L

0d2+1, s∗ K

] [
V ∗ 0d∗, d2+1

0d2+1, s∗ Id2+1

]T

.

(13)
Ir represents an r × r identity matrix. Matrix L is the pro-
jection of Ẽ onto the kernel principal components of Ω∗:

L = (α∗)T (A∗)T A∗
(new)γ . (14)

The matrix (A∗)T A∗
(new) is realizable using the kernel

function since it contains dot products only. To define J
and K, first define H as the orthogonal component from
span(A∗α∗) to Ẽ, i.e. H = Ẽ −A∗α∗L = A∗

(new)η, with

η :=
[

γ1:s∗,: − α∗L
γ(s∗+1):(s∗+s2),:

]
. (15)

H is related to J and K as H = JK, with J being an or-
thonormal basis for the subspace span(H), while K is sim-
ply the projection of H onto J . To obtain J , we can apply
Kernel SVD on H with the kernel matrix to be factorized as

MH = ηT (A∗
(new))

T A∗
(new)η . (16)

This is computable using the kernel function. Hence, J has
the form J = A∗

(new)κ, with κ containing the coefficients
for spanning the orthonormal basis J . K can be computed
using the kernel function as K = κT (A∗

(new))
T A∗

(new)η.

3

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

The middle matrix of Eq. (13) is constructed and fac-
torized using the SVD as U ′Σ′(V ′)T which is then substi-
tuted back into Eq. (13). The matrix [A∗α∗Σ∗(V ∗)T Ẽ]
on which SVD is sought then assumes the form

[A∗α∗Σ∗(V ∗)T Ẽ] = U ′′Σ′′(V ′′)T . (17)

This is updated PCA of [Ã∗ Ã2]. Singular values Σ′′ is
simply equal to Σ′, while right singular vectors V ′′ is the
result of the multiplication between the right-most matrix
of Eq. (13) with V ′. The left singular vectors U ′′ is

U ′′ =
[

A∗α∗ A∗
(new)κ

]
U ′ = A∗

(new)α
∗
(new) , (18)

with α∗
(new) :=

[
α∗

0s2,s∗

]
U ′

1:s∗,:+κU ′
(s∗+1):(s∗+s2),: .

The other parameters of the updated KPCA model are sim-
ply Σ∗

(new) = Σ′′ and V ∗
(new) = V ′′. Finally, set Ω∗ ←

Ω∗
(new), where Ω∗

(new) is the structure that contains all the
parameters with the subscript (new). Following the pro-
cesses described above, the KPCA model Ω∗ is then subse-
quently updated using Ã3 and so on.

Note that Ã1 could have been deflated by retaining
r < s1 kernel principal components before being used to
initialize Ω∗. In this case, the size of matrices α∗, Σ∗ and
V ∗ would differ, and the size of other affected matrices in
the derivations above should be changed accordingly. In
general, deflation can be performed on Ω∗ after each up-
date. This is useful if the variance of the processed data is
concentrated on a few kernel principal components only.

5. Comparison of Computational Complexity

Following our method, the data a is partitioned into c
blocks ak with k = {1, . . . , c} on which separate GKPCA’s
are performed. Each block is of size dk. Assume that to
satisfactory approximation accuracies, sk < dk vectors are
greedily filtered from each block ak. The individual com-
putational effort required would scale as O(dks2

k). When
many partitions were created, i.e. if dk, sk � n, s, the
cumulative cost of the individual GKPCA’s would be sig-
nificantly less than performing an overall GKPCA on a to
obtain s =

∑c
k=1 sk representative vectors.

For the incremental KPCA process, a series of small
SVD’s are to be carried out. The most computationally ex-
pensive step is the SVD of the middle matrix of Eq. (13)
and the orthogonalization of matrix H (using Kernel SVD).
During incremental KPCA, if no deflations are to be made,
the largest SVD problem among these small SVD’s is of
size s×s. This is as costly as performing a direct KPCA on
a by using the aggregated reduced set [ȧ1, . . . , ȧc] which
contains s vectors— there is no free lunch. In fact, the re-
sultant kernel principal components are effectively the same

R = 4 R = 8
0

20

40

60

80

kernel principal components

co
rr

ec
t r

at
e

(%
)

KPCA
full−GKPCA
mult−GKPCA

Figure 1. Recognition rates of 3 KPCA meth-
ods for ABALONE data.

0

1

2

3

4

lo
g 10

 s
ec

on
ds

KPCA
Kronecker
Nystroem
full−GKPCA
mult−GKPCA

Figure 2. Training time of five KPCA methods
on the ABALONE training set (3000 vectors).
Times for the Kronecker and Nyström meth-
ods are approximate (taken from [11]).

(nonetheless, partitioning the data and performing multiple
GKPCA’s allowed us to obtain the reduced set in signifi-
cantly shorter time than applying GKPCA on a directly).

If we are willing to deflate the KPCA model during
updates by retaining only a subset of available kernel prin-
cipal components, the cumulative computational effort for
the small SVD problems can be substantially smaller than
factorizing an s× s matrix. It could be advantageous to de-
flate if the data distribution is concentrated on a few kernel
principal components only, and the resultant KPCA model
is effectively similar to the ground truth.

6. Experimental Results

We first examine the performance of the proposed
method using the ABALONE dataset from the UCI Reposi-
tory [2]. This dataset contains 4177 training instances, each
of which has 8 attributes of abalone measurement and one
label indicating age (1–29 years). Following [11], we as-
sign vectors with ages 1–10 into Class 1 and ages 11-29
into Class 2. A binary classifier is built based on this as-
signment. We designate the first-3000 vectors as the train-
ing set and the remaining as the testing set. KPCA is ap-
plied as a non-linear feature extractor on the training set
using the Gaussian kernel of width 2. Here, 3 methods are

4

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

used— standard KPCA, full-GKPCA (GKPCA on the full
training set) and the proposed method which we abbreviate
to mult-GKPCA. For mult-GKPCA, we randomly partition
the training set into 10 blocks. GKPCA is performed indi-
vidually on these partitions to achieve mean-squared-error
(mse) of 0.001 in approximating the original data block.
During incremental KPCA, the intermediate KPCA mod-
els are deflated such that only 99.99% of the data variance
is retained. For full-GKPCA, filtering is conducted until the
number of filtered vectors is the same as the total number of
filtered vectors from mult-GKPCA. For all 3 methods, both
training and testing sets are then projected onto the kernel
principal components obtained. Using the projection com-
ponents, the nearest-neighbour rule is followed to assign the
label of the testing set. Figures 1 and 2 respectively illus-
trate the classification rate and overall training duration of
all 3 methods (and 2 other competing algorithms [9, 11]).
All 3 methods return very similar classification rates (refer
to [11] for the performance of the Kronecker and Nyström1

methods). This proves that, for the ABALONE dataset,
the proposed KPCA method can closely approximate the
ground truth KPCA. Secondly, our method presents a sub-
stantial improvement in training speed over other methods.
Also, our method provides a much sparser KPCA expansion
(only 266 vectors out of 3000 were filtered out).

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

m
se

digit

Figure 4. Comparison of average mse of dif-
ferent methods. For each digit, column 1 is
PCA (R=128), column 2 is PCA (R=64), col-
umn 3 is full-GKPCA (R=256) and column 4 is
mult-GKPCA (R=256).

The second experiment involves denoising of hand-
written digit images from the USPS dataset. This dataset
contains 7291 training and 2007 testing vectors of length
256 dimensions (16× 16 pixels). We aim to learn an image
model for the handwritten digits by applying (kernel) PCA
on the training set. Images from the testing set are corrupted
with normal noise of 0.25 s.d. before being denoised by

1 In [11], the Nyström method was forced to have the same execution time
as the Kronecker method (hence the result in Figure 2), but this caused
it to produce inferior classification rates. To achieve similar rates, the
training time has to be prolonged for better KPCA approximation.

centering, projecting and reconstructing it using the mean
and (kernel) principal components. We compare 3 methods
for the task: PCA, full-GKPCA and mult-GKPCA. For the
kernel methods, we use the Gaussian kernel of width 4. For
mult-GKPCA, we use the intrinsic 10-digit partition of the
7291 vectors. During filtering, a stopping criterion of 0.1
mse is employed. During incremental KPCA, a maximum
of 600 kernel principal components are retained. For full-
GKPCA, filtering is conducted until the number of filtered
vectors is the same as the total number of filtered vectors
from mult-GKPCA. For PCA, due to the sheer size of the
training set, the incremental method [8] is used. We use the
mse between an original test image and its denoised version
as a fidelity measure. Figure 3 shows some sample denois-
ing results which indicate that the kernel methods perform
generally better than PCA. Figure 4 depicts the average
mse’s of the 3 methods which show that mult-GKPCA per-
forms almost equally as well as full-GKPCA. However, the
total training duration for full-GKPCA is 19447.56s, while
mult-GKPCA requires only 858.40s! Also, for these meth-
ods, the expansion size is only 3623 (out of 7291) vectors.

Figure 5. Yale face image super-resolution.
Rows 1 and 2 respectively show the original
image and low-resolution image. Rows 3 to
6 respectively show super-resolution results
of PCA, KPCA, full-GKPCA and mult-GKPCA.

The third experiment involves performing super-
resolution on face images from Yale Face Database B [6].
This dataset contains 5760 images of 10 subjects in different
poses and lighting conditions. We crop and resize the face
images to 36 × 36 pixels. The dataset is partitioned into 2
disjoint subsets: a training set with 5000 images and a test-
ing set with 760 images. We aim to learn a model for the

5

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

Figure 3. USPS denoising. For each digit block, row 1 is the original test images, row 2 the cor-
rupted versions, row 3 is denoised using PCA (R=128), row 4 is denoised using PCA (R=64), row 5 is
denoised using full-GKPCA (R=256) and row 6 is denoised using mult-GKPCA (R=256).

face image distribution by performing (kernel) PCA on the
training set. Images from the testing set are blurred (through
resizing and interpolation) before being enhanced by cen-
tering, projecting and reconstructing it using the mean and
(kernel) principal components. We compare 4 methods for
the task: PCA, KPCA, full-GKPCA and mult-GKPCA. For
the kernel methods, we use the Gaussian kernel of width
1000. For mult-GKPCA, we use the intrinsic 10-subject
partition of the 5000 vectors. A maximum of 250 vectors
are filtered from each block. During incremental KPCA,
a maximum of 1000 kernel principal components are re-
tained. As in the USPS experiment, we use the mse be-
tween an original test image and its enhanced version as an
objective score. PCA achieved the lowest average mse of
238.11, while KPCA, full-GKPCA and mult-GKPCA re-
spectively achieved 286.29, 334.82 and 350.42. However,
as shown in Figure 5, enhancement by the kernel methods
are visually much better than PCA. Such results were ob-
tained by [7] as well (refer to the paper for an explanation).
What is crucial here is that mult-GKPCA performed as well
as KPCA and full-GKPCA. In terms of training speed how-
ever, KPCA and full-GKPCA respectively needed 6132.08s
and 4541.93s, while mult-GKPCA needed 1224.80s only.

7. Conclusion

In this paper, we proposed a novel method for evaluat-
ing the KPCA on large scale datasets. The basis of our so-
lution lies in partitioning a large dataset into many smaller
data blocks. We proposed a method to merge the individual
GKPCA-processed data blocks to obtain the overall KPCA.
Through experiments, we showed that our method presents
a substantial improvement in training speed over previous
approaches, while maintaining close approximation to the
ground truth KPCA. A major factor contributing to the re-

duction of the training duration is that we perform GKPCA
on multiple small data blocks rather than the overall dataset.
Finally, we demonstrated 2 practical computer vision appli-
cations using the proposed method.

References

[1] D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling
techniques for kernel methods. In Advances in NIPS, 2001.

[2] C. Blake, E. Keogh, and C. Merz. UCI repository of ma-
chine learning databases, Department of Computer Science,
University of California, Irvine.

[3] T.-J. Chin, K. Schindler, and D. Suter. Incremental kernel
SVD for face recognition with image sets. In FG, 2006.

[4] N. Cristianini and J. Shawe-Taylor. Kernel methods for pat-
tern analysis. Cambridge Uni. Press, 2004.

[5] V. Franc. Optimization algorithms for kernel methods. PhD
thesis, Centre for Machine Perception, Czech Technical
University, 2005.

[6] A. Georghiades, P. Belhumeur, and D. Kriegman. From few
to many: Illumination cone models for face recognition un-
der variable lighting and pose. IEEE PAMI, 23(6):643–660,
2001.

[7] K. I. Kim, M. O. Franz, and B. Schölkopf. Iterative ker-
nel principal component analysis for image modeling. IEEE
PAMI, 27(9):1351–1366, 2005.

[8] J. Lim, D. Ross, R.-S. Lin, and M.-H. Yang. Incremental
learning for visual tracking. In Advances in NIPS, pages
793–800, 2004.

[9] A. J. Smola and B. Schölkopf. Sparse greedy matrix approx-
imation for machine learning. In ICML, 2000.

[10] C. Williams and M. Seeger. Using the Nyström method to
speed up kernel machines. In Advances in NIPS, 2001.

[11] G. Wu, Z. Zhang, and E. Chang. Kronecker factorization for
speeding up kernel machines. In SIAM International Con-
ference on Data Mining (SDM), 2005.

6

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00 © 2006

